Как проверить усилитель звука сигналом прямоугольной формы

Информация

Введение

Закончив свой шедевр, с некоторым расстройством Вы обнаруживаете, что он не работает. Неработоспособность может вариировать от мгновенного сгорания при включении питания (помните, какие предохранительные резисторы я всегда предлагаю? Теперь Вы знаете, зачем!), до странных звуков, прерывистого поведения и т.д. и т.п.

Невозможно написать статью, которая охватывала бы все возможные случаи неполадок, но, надеюсь, представленный здесь материал поможет устранять их с минимальными затратами.

Одно из положений, на котором я многократно акцентировал внимание на своем сайте, заключается в том, что если проект не работает, то почти наверняка допущена ошибка. Хотя я, как правило, делаю все возможное, чтобы помочь получить работоспособный проект, но это и всё, что я могу сделать, поэтому выяснение, что же сделано неправильно, является именно Вашей задачей (а не моей).

Поскольку основные методы устранения неполадок широко не известны, или же так кажется, поскольку я получаю огромное количество запросов о помощи и должен пытаться диагностировать из получаемых описаний проблем, что же пошло не так. Само собой разумеется, что многие из этих описаний оставляют меня в недоумении о чем же меня спрашивают.

Это не обвиняет человека, задающего вопрос, но показывает, что в заблуждение может вводить даже терминология. Существует огромная разница между «гулом» (‘hum’) и «гудением» (‘buzz’), но если Вы этого не понимаете, то мне нужно либо выяснить наиболее вероятный (правильный) термин из представленного описания, либо переспросить.

Данную статью следует читать в сочетании со статьями «Руководство по проектированию усилителей мощности» и «Как усилители работают», Кроме того, понадобится также копия принципиальной схемы усилителя в качестве эталонной. В этой статье я коснусь только очень общих моментов, т.к. на моем сайте и в других местах есть множество конструкций усилителей и, если их описания характерны только для одной конкретной конструкции, то Вы можете столкнуться с большими трудностями при работе над чем-то другим.

Чтобы грамотно диагностировать неисправности, Вам нужно хорошо понимать, как именно работает схема — это позволяет принимать обоснованные решения, знать, что искать (и где) и мгновенно распознавать правильные или неправильные значения измеренных напряжений. Я никогда не утверждал, что это просто!

В данной статье я сделал одно важное допущение: прямое падение напряжения на диоде (или транзисторном переходе) номинально составляет 650 мВ (0,65 В), но оно может изменяться в значительных пределах. В большинстве описаний, которые будут приведены ниже, я предполагаю величину 650 мВ, но вполне ожидаемо увидеть его где-то между 0,55 и 0,75 В, в зависимости от типа, протекающего тока и т.д.

При условии, что Ваш предусилитель (или какое-то иное устройство) когда-то работал, устранение неполадок обычно является довольно простой задачей. Если он не заработал сразу же после сборки — значит, где-то допущена ошибка. Все схемы с сайта ESP известны, как работоспособные, а те, у которых есть печатная плата, имеют даже некоторую историю — до Вас их собрало много людей.

Как проверить усилитель звука сигналом прямоугольной формы

Кроме того, я тестирую каждую новую плату, чтобы убедиться, что ошибок нет. Хотя в этой статье я использую термин «предусилитель», устройство может быть микшером, кроссовером, инфразвуковым фильтром или любой другой линейной (аудиопроцессорной) схемой. Некоторые другие схемы не являются линейными, поэтому многие из описываемых пунктов будут к ним неприменимы. Эта статья не охватывает нелинейные схемы!

Как и в случае усилителей мощности, почти все неисправности во вновь изготовленных устройствах являются результатом ошибок монтажа. Транзисторы, диоды или операционные усилители, возможно, были установлены задом наперед или имеется одно или несколько «сухих» («холодных») паяных соединений, либо перемычек из припоя. Другие распространенные проблемы включают неправильные значения резисторов и/или конденсаторов в одном или нескольких местах.

Другой очень распространенной проблемой является отсутствие подключения нулевой шины к источнику питания (заземления). Обычно есть три подключения от источника питания к предусилителю, кроссоверу или другой линейной схеме. Некоторые схемы могут использовать только один источник питания, в этом случае есть только два соединения — плюсовое напряжение питания  и заземление.

Для тестирования нужен, как минимум, мультиметр. Очень полезен осциллограф, если он есть и еще должен быть источник тестового сигнала. Последним может быть CD-плеер, FM-радио, генератор розового шума или звуковой генератор. Найти неисправность без источника сигнала, как правило, невозможно, потому что нет возможности отслеживать сигнал по каскадам. Хорошей альтернативой осциллографу является трассировочный усилитель (описанный ниже).

Схема и методика проверки

Выход испытываемого усилителя нагружается активным сопротивлением, равным номинальной нагрузке 4, 8,16 или 32 Ом и способным рассеивать номинальную выходную мощность усилителя.

Выход генератора подключается к линейному входу усилителя. Выходной  уровень генератора подбирается так, чтобы при частично открытом регуляторе громкости усилителя на входе осциллографа получился сигнал, амплитудой 1-2 вольта. Не рекомендуется при таком виде измерений полностью открывать регулятор громкости, чтобы не допускать насыщения транзисторных каскадов усилителя.

Как проверить усилитель прямоугольным сигналом - изображение

Качество сигнала прямоугольной формы, в частности его фронтов не является критичным, т.к. при наличии искажений, вносимых усилителем это будет отчетливо видно на осциллограмме.

Сигнал прямоугольной формы имеет частотный спектр богатый гармониками и, по правде говоря, теоретически, для идеального его воспроизведения необходимо чтобы верхняя граница частотного диапазона усилителя располагалась где-то в бесконечности, в таком случае фронты сигнала будут идеально прямоугольными.

На практике же если некоторые частоты не пропускаются совсем или пропускаются хуже, то форма сигнала на выходе видоизменяется. Форма так же изменяется, если между некоторыми частотами или полосами частот в спектре получаются фазовые искажения, или если усилитель вносит большие нелинейные искажения, или самовозбуждается.

В схемах на операционных усилителях (ОУ) существует не так много вариантов нарушений их работы. Большинство линейных схем (используемых в предусилителях) имеют одну общую черту — на обоих входах должны быть примерно одинаковые напряжения, а также должно быть напряжение на выходе. Наиболее распространенной проблемой является самовозбуждение, особенно для очень быстрых ОУ.

Тем не менее, возможно, что ОУ в схеме самовозбуждается, поэтому следует принять разумные меры предосторожности — применять экранировку ко входным и выходным разъемам и всегда использовать резистор 100 Ом последовательно с выходом любого ОУ, подключаемого к кабелю, независимо от длины последнего.

Как проверить усилитель звука прямоугольным сигналом - изображение

Могут возникнуть и другие проблемы, но обычно они будут результатом плохих паяных соединений (как обычно), повреждения печатных плат или неправильно установленных компонентов. Все платы ESP будут всегда работать с первого включения, если они собраны в соответствии с инструкциями, но если этого нет — значит, имеется ошибка в размещении компонентов или неисправность ОУ. Да, новые ОУ могут быть неисправными  — такое происходит не очень часто, но всё же бывает.

Как и в случае усилителей мощности, довольно распространенной «ошибкой» является неподключенная (случайно или по иной причине) шина заземления к источнику питания (нулевая шина). Питание ± означает, что необходим провод заземления (или зануления) — он отнюдь не является необязательным!

Подключите черный щуп тестера к подходящей точке заземления на печатной плате (можно использовать контакт заземления входа, выхода или питания). Проверьте напряжения питания положительной и отрицательной полярности — они должны быть близки к ± 15 В (или к тому напряжению, какое источник питания должен обеспечить).

Если заземление не подключено, Вы можете обнаружить, что питающие напряжения не равны. Вы даже можете получить ситуацию, когда напряжение положительной полярности (к примеру) составляет всего 2 вольта, а отрицательной — 28 В. Это верный признак того, что у Вас отключена нулевая шина питания или неисправен сам блок питания.

После того, как Вы убедились, что напряжения питания правильные, проверьте, не нагреваются ли операционные усилители. Как только Вы удостоверитесь, что нет проблем с питанием, осциллограф и генератор звука становятся Вашими самыми лучшими друзьями. Поиск неисправностей можно производить и только с помощью тестера, но это намного более трудоемко.

Примечание. Предполагается, что до этого пункта все начальные измерения проводились с защитными резисторами, установленными между источником питания и предусилителем и что схема питается от напряжений ± 15 В. Если используется другие напряжения питания, большинство пунктов остаются по-прежнему применимы, но если схема использует только одно напряжение питания, ссылка на «общую шину» (или «заземление») не применяется.

Затем убедитесь, что на всех выводах выходов ОУ присутствует нулевое напряжение. Хотя большинство схем будут работать даже с несколькими вольтами на выходе, это ненормально и следует найти причину этого. Любые выходы, напряжение на которых не близко к нулю, свидетельствуют о дефекте либо тестируемого каскада, либо предыдущего. Вернитесь с выхода на вход, пока не найдете каскад, где напряжение нормальное.

Если обнаружен операционный усилитель с аномальным выходным напряжением, проверьте также его входы. ОУ прекрасно усиливают постоянное напряжение, так же хорошо, как и переменное, поэтому ошибочное напряжение на выходе может быть просто результатом поступления на его вход постоянного напряжения. В рабочей линейной цепи на ОУ на двух входах должно быть одинаковое напряжение, но схема с высоким сопротивлением может легко обмануть.

Рис. 4 Разомкнутая входная цепь ОУ

На Рис. 4 показан пример эквивалентной схемы операционного усилителя с оборванным входным резистором из-за плохого паяного соединения. Для неинвертирующего входа единственным референтным напряжением является сопротивление утечки по самой печатной плате, которое будет очень высоким — это показано как Rp1, Rp2 (паразитное сопротивление).

Проблема заключается в том, что как только был подключен тестер, вход приобрел возврат на заземление и выходное напряжение устремилось к нормальному нулевому значению. Но Вы этого не увидите, поскольку к выходу тестер больше не подключен. Поэтому напряжение, измеренное на неинвертирующем входе, является нормальным, несмотря на то, что какое-то напряжение присутствует на выходе (оно может изменяться со временем).

При подключении щупа ко входному выводу, входной конденсатор заряжается (или разряжается) и это в течение некоторого времени заставит схему выглядеть нормально. Если у Вас возникла эта проблема, то она обычно проявляет себя как наличие постоянного напряжение на выходе, которое медленно изменяется в плюс или в минус, в зависимости от типа операционного усилителя.

На самом деле в схеме, основанной на операционных усилителях, очень мало что может пойти не так. ОУ обычно или работают, или нет — неустойчивые состояния возникать могут, но они очень необычны. Можно предположить, что неисправными могут быть и новые операционные усилители и, хотя это, безусловно, возможно, но встречается крайне редко. На протяжении многих лет я создал сотни схем на ОУ и за все это время видел только несколько новых устройств, не работавших с самого начала.

Почти все неисправности с новой схемой, основанной на операционных усилителях, будут являться результатом ошибок монтажа. Легко ошибаться, используя плату прототипа, но такое намного менее вероятно с готовой печатной платой. Тем не менее, неправильное размещение резисторов или конденсаторов может иметь очень неожиданные результаты.

Техника трассировки сигналов идеально подходит для схем на ОУ, особенно там, где есть несколько каскадов. Идеальный измеритель сигнала — это осциллограф, но его стоимость для любителей может не оправдаться. Это предположение может быть и не столь существенным — один местный поставщик электроники в Австралии продает базовый CRO осциллограф (с электронно-лучевой трубкой) менее чем за 130 долларов США.

Предполагая, что осциллограф недоступен, Вам нужен небольшой усилитель мощности с подходящим динамиком — порядка пары ватт. Я не рекомендую наушники, т.к. Вы можете зондировать точку с высоким уровнем сигнала и подвергать слух риску повреждения.

Индикаторный усилитель требует большого усиления и важное значение имеет регулировка усиления (или громкости). Он должен также иметь высокий входной импеданс, чтобы не нагружал тестируемую цепь. Ничего необычного не требуется, хотя идеальным является высокоимпедансный буферизированный вход, за которым следует небольшой микросхемный усилитель мощности. Приведенная ниже схема основана на Проекте № 164, поэтому гляньте страницу этого проекта для получения дополнительной информации.

Рис. 5  Индикаторный усилитель

Подходящая схема показана выше. Она заменяет показанную первоначально, ее легче собрать и, вероятно, дешевле. Входной буфер на полевом транзисторе с PN-переходом (JFET) обеспечивает высокий входной импеданс, а микросхему усилителя LM386 можно использовать для управления небольшим громкоговорителем или наушниками.

Если предложенный полевой транзистор недоступен, вместо него будут работать большинство других подобных, но может потребоваться изменить значение R3 (2,2 кОм), чтобы получить соответствующее напряжение на его истоке. Идеальная чувствительность будет при напряжении около 4 В, но обычно достаточно больше 1,5 В.

Схема будет достаточно эффективно раскачивать 8-омный динамик. Не сочтите, что показанная схема может быть использована для маломощного Hi-Fi — LM386 не является высококачественным усилителем. Не стесняйтесь использовать «настоящий» усилитель мощности (дискретный или интегральный), если это заставит Вас почувствовать себя лучше, но обычно не требуется больше, чем около 100 милливатт.

Максимальное усиление довольно высокое. В первом каскаде нет усиления, но LM386 можно переключать между коэффициентами усиления 20 и 200. Схема будет шумной, собирающей помехи и, как правило, довольно ужасной по качеству, но идеально подходит для простой задачи трассировки сигнала. При максимальном усилении частотная характеристика также довольно ограничена, но это не имеет значения. Все это для того, чтобы обеспечить отслеживание сигнала через схему и Вы сможете услышать все, происходящее в каждой точке на этом пути.

2 Общие проблемы

Существует довольно много распространенных проблем, с которыми время от времени придется сталкиваться. Поиск неисправностей упрощается, если один канал стереоаппарата работает, а другой нет, т.к. есть база, которую можно использовать для сравнения. Это относится к показаниям напряжения, измерениям сопротивления и т.д.

Из сказанного следует, что если не работает любой из проектов, выполненный на печатных платах с «Audio Pages», значит, Вы совершили ошибку. Бывают случаи, что неисправны или неправильно маркированы новые компоненты, но, за исключением контрафактных силовых транзисторов, они очень редки. Следует знать, что хотя новые компоненты и могут быть неисправными, но сначала нужно заподозрить свою собственную работу.

Приведенные ниже основные замечания демонстрируют некоторые из наиболее распространенных причин неудач в реализации проектов.

Выполненное паяное соединение должно быть чистым, блестящим и демонстрировать идеальную адгезию как к выводу компонента, так и к печатной плате. Паяное соединение выполнено неправильно, если имеются какие-либо признаки того, что припой покрыт «изморозью», сидит на печатной плате в виде «капли» или не поднимается вверх по выводу компонента в виде плавной дуги.

Оно может даже быть работающим, но контакт является/может быть основанным на давлении, а не на сплаве, каким он должен быть (припой образует «сплав» или молекулярную связь металлов между припоем, выводом компонента и печатной платой). В качестве отличного учебника по основным методам (и тому, что не следует делать), см. http://www.epemag.wimborne.co.uk/solderfaq.htm. В Интернете таких сайтов очень много и поиск методов пайки в Интернете найдет Вам множество ссылок по этому вопросу.

Самая важная вещь в создании отличного паяного соединения (в отличие от отвратительного или едва приемлемого) — это чистота! Выводы компонентов, печатная плата и жало паяльника должны быть абсолютно свободны от какого-либо загрязнения — необходимо удалить сожженный флюс, расплавленный пластик, окислы, старый припой и т.д.

Убедитесь, что Ваш паяльник (или паяльная станция) может обеспечить нужное количество тепла, а во время охлаждения припоя компонент остается неподвижным. При большом количестве тепла будет гореть флюс (и даже сам припой!) и может повредиться компонент. Слишком мало тепла создаст «холодное» («сухое») паяное соединение, где припой просто находится в виде капли, но не образует металлической связи.

Все компоненты должны быть размещены на правильных местах, как показано на шелкографии печатной платы и/или в инструкции по монтажу. Хотя может показаться очевидным, но это наиболее распространенная форма «отказа компонента» — компонент сам по себе не является неисправным, но если находится в неправильном месте, то нарушает работу схемы. Ситуация усугубляется и тем фактом, что многие компоненты используют «странные» маркировки и не всегда легко понять, какое значение должно быть.

Как проверить усилитель прямоугольным сигналом - изображение

С резисторами, кодированными цветными полосками, если Вы уверенно не знаете цветового кода, хорошей идеей является перемерить их все перед установкой. Особенно это касается 1% пятиполосных кодов, поскольку они могут быть очень запутанными даже для профессионалов! В разделе статей этого сайта есть некоторые сведения об основных компонентах, маркировках и т.д. (См. Статьи). Эта информация не является, да и не может быть исчерпывающей, поскольку имеется слишком много разных устройств, чтобы охватить их все.

Всегда, всегда, убедитесь, что Вы скачали спецификации производителей на транзисторы, микросхемы и т.д. Нередко случается так, что поставщики заменяют оригинальные (брендовые) компоненты «эквивалентами». Кроме того, что они могут (или не могут) быть такими же хорошими, как и оригиналы, у них также могут быть отличия в цоколевке.

Единственный способ узнать наверняка — получить джаташит от компании, фактически изготовившей данный компонент. Это, в основном, относится к полупроводникам, но может касаться также и реле, некоторых электролитических конденсаторов (особенно конденсаторов фильтра питания) и других компонентов. Что касается полупроводников — большинство из них будут прекрасного качества, но дорогостоящие выходные транзисторы большой мощности регулярно подделываются! См. «Поддельные транзисторы» для получения дополнительной информации по этому вопросу.

Иногда Вы можете получить совершенно новый фирменный компонент, который оказывается неисправным. Раздражает? Конечно, но это и неизбежно. В таком случае Вам действительно нужно оттачивать свои навыки поиска неисправностей, поскольку это явно не результат ошибки с Вашей стороны. Эти ошибки могут быть сложными для поиска и требуют дисциплинированного подхода к устранению неполадок при ремонте.

2.3 Самовозбуждение

Резистор цепи Цобеля в большинстве усилителей расположен на выходе  последовательно с конденсатором, обычно емкостью 100 nF, однако, возможны варианты. Если резистор начинает дымиться и он или усилитель быстро нагревается, это значит, что либо усилитель самовозбуждается, либо Вы пытаетесь усилить слишком высокую частоту.

Самовозбуждение вызвано неправильным номиналом конденсатора частотной коррекции (обычно между 47 и 220 пФ) или (что более вероятно), расположением входных кабелей слишком близко к проводникам, идущим к динамикам. Входные кабели к усилителям мощности всегда должны экранироваться и располагаться как можно дальше от проводов от источника питания постоянного тока, сетевых трансформаторов и сетевого шнура, проводов и разъемов к громкоговорителям и т.д. В некоторых случаях может потребоваться обеспечить экранирование соединения между входным предусилителем и усилителем мощности.

Во время тестирования радиатор может не быть заземлен на общий провод источника питания. В некоторых случаях это может вызвать самовозбуждение, поскольку радиатор действует как антенна, аналогично входному кабелю, если он не экранирован. Всегда заземляйте радиатор, даже для быстрого тестирования.

К слову о радиаторах: никогда не используйте усилитель мощности без радиатора. Устройства могут очень быстро перегреться и легко повредиться при превышении температуры. Если Вы спешите, то для крепления временного радиатора можете использовать маленький зажим, но при этом тщательно контролируйте температуру.

Я рад возможности сказать, что на страницах Audio Pages мало схемных ошибок (если таковые вообще есть). Однако, это не всегда так и в схемах из Интернета можно найти немало ошибок (некоторые опубликованные схемы не будут работать вообще или будут подвергать перегрузке все компоненты за переделами их номиналов).

Хотя в некоторых проектных печатных платах могут быть случайные ошибки, но на них четко указывается в примечаниях к их изготовлению и они будут, как правило, незначительными — серьезные ошибки требуют переделки платы (что дорого), однако, некоторые печатные платы ESP всё же требуют какой-либо модификации, при которой ошибки трассировки обычно исправляются при выполнении следующей ревизии ПП. Там, где существует какая-либо ошибка, средство ее устранения будет указано в статье по изготовлению.

Само собой разумеется, что если Вы обнаружите ошибку в любом из проектов ESP (ПП, схематические или конструктивные детали), то, пожалуйста, дайте мне знать — это основная причина, по которой их так мало: люди сообщают о них и я ценю отзывы. Однако, если Вы обнаружили ошибку в каком-либо чужом проекте — я даже не хочу об этом знать. Сообщайте о ней автору, а не мне.

Возможные варианты на выходе усилителя

На рисунках собраны и показаны осциллограммы типичных случаев искажения прямоугольного сигнала при его прохождении через усилитель звука

1 — исходный сигнал прямоугольной формы частотой 1 кГц, подаваемый на вход усилителя. Фронты не идеально прямоугольные, но и этого достаточно.

2 — сигнал усилителя с линейной характеристикой. Легкий наклон вызван спадом в области инфразвука, ниже 20Гц. Такой вид осциллограммы может свидетельствовать о наличии фильтра инфразвука. Если усилитель от винилового проигрывателя то в нем имеется рокот фильтр.

3 —  слабое затухание в области высоких частот. Приблизительно 3 дБ на 10кГц

4 — значительное затухание на высоких частотах. -6 дБ на 3кГЦ и -15дБ на 20кГц

5 — подъем высоких частот. 6дБ на 10 кГц

6— подъем низких частот 15 дБ на частотах 15-50 Гц

7 — затухание низких частот. -15 дБ на частотах 15-50 Гц

8 — исправный усилитель с линейной характеристикой. На выходе подключен громкоговоритель.

9— самовозбуждающийся усилитель, нагруженный громкоговорителем.

Если на усилителе имеются регуляторы тембра то во время оценки следует выставить их в положение линейной характеристики. Если при этом наблюдаются картина как на рисунках 3 и 4 то это с большей вероятностью говорит о неправильно подобранных постоянных связанных RC-цепей(недостаточная емкость конденсатора либо мало  сопротивление резистора)

Как проверить усилитель звука прямоугольным сигналом - изображение

Причиной затухания на низких частотах может быть недостаточная емкости конденсаторов по входу и выходу усилителя.

При наличии двухканального осциллографа очень полезна сравнительная оценка идентичности двух стереоканалов и точности сдвоенных стереопотенциометров, идентичности фильтров, а также проводить их сравнение с эталонным сигналом.

3 Инструментарий для устранения неполадок

3.1 Мультиметр

Чтобы иметь возможность выполнять даже самую базовую диагностику, Вам понадобится, как минимум, мультиметр, а желательно два. Большинство людей предпочитают их с цифровой индикацией, но если Вы знаете, как использовать аналоговый тестер, то сможете найти то, что пропустят цифровые мультиметры.

Вы должны иметь возможность измерять:

  • напряжение как переменного, так и постоянного тока, от нескольких милливольт до 100 В (или более);
  • ток, достаточно постоянный, но предпочтительно, по крайней мере, до 2 А;
  • сопротивление, от менее 1 Ом до 10 МОм;
  • другие функции (тестирование транзисторов, емкость, частота) полезны, но не являются обязательными.

Вам нужен также источник сигнала. Хотя может быть полезен и приемник (к примеру), но он не является хорошим источником правильных тестовых сигналов и поэтому применение его ограничено. Существует несколько неплохих генераторов звуковой частоты на базе ПК, доступных в Интернете (разве что немного неудобных в использовании).

3.3 Осциллограф

Для некоторых тестов осциллограф почти незаменим. Хотя немногие любители могут оправдать покупку такого дорогостоящего инструмента для тестирования, для многих профессионалов CRO (осциллограф с катодной трубкой) или «осциллоскоп» является первым инструментом, подключаемым к чему-либо не работающему.

Как проверить усилитель прямоугольным сигналом - изображение

Предупреждение: осциллограф нельзя использовать так же, как и мультиметр (если это не портативный изолированный блок), поскольку один разъем щупа подключен к шасси, а оттуда — к заземлению сети. Никогда, ни в коем случае не отсоединяйте защитное заземление от осциллографа — это приглашение к катастрофе, смерти и/или уничтожению чего-то или кого-то, в какой-то момент. Это чрезвычайно опасная практика.

«Эквивалент нагрузки» — обычно резистор большой мощности или набор резисторов, в идеале переключаемый на 4 или 8 Ом. Он позволит бесшумно выполнять тестирование полной мощности. Если есть неисправность, то нагрузка просто нагревается, но громкоговорители при этом не поджариваются. При желании, для контроля выходного сигнала, от каждого вывода нагрузки ко внешнему громкоговорителю можно подключить резистор сопротивлением 47 Ом, мощностью 10 Вт.

Если нужно рассеять много тепла, набор нагрузочных резисторов можно погрузить в масло (прекрасное решение — легкое моторное масло) или воду. Для удаления тепла лучше всего подходит вода, но при работе с постоянным током она может вызвать коррозию. Не используйте хладагент на основе гликоля (охлаждающая жидкость для автомобильного двигателя).

Он довольно проводящий и образует очень неприятную коррозию, особенно при протекании постоянного тока. Ваш эквивалент нагрузки должен иметь возможность использования для тестирования источников питания, а постоянный ток приведет к выходу из строя резистивных проводников вследствие коррозии и электролиза.

Я действительно не ожидал проблем с гликолем, но он бесполезен для эквивалентов нагрузок и никогда не должен использоваться. Мой личный фаворит — легкое моторное масло (чистое). Это то, что я использую, чтобы охладить нагрузку, которая время от времени подвергалась воздействию мощности до 1 кВт. Я использую один и тот же эквивалент нагрузки уже более 30 лет и он никогда не выходил из строя.

Электропитание стенда очень полезная вещь, но, возможно, еще более полезным является трансформатор переменного напряжения («ЛАТР»; «Variac™»). Он обеспечит любое регулируемое напряжение, а напряжение питания усилителя можно медленно увеличивать, контролируя его выходное напряжение (и ток потребления вторым мультиметром).

Еще один полезный тестовый инструмент для тех, кто не в состоянии оправдать расходы (опять же, ЛАТР — это недешево) — это «ламповый провод» — стандартная лампа накаливания (обычно достаточно примерно 100 Вт), включенная в разрыв сетевого шнура (и правильно изолированная!). Усилитель с коротким замыканием вызовет свечение лампы с полной яркостью, тогда, как нормальная нагрузка заставит лампу мгновенно вспыхнуть, а затем притухнуть до постоянного тусклого свечения.

Одним из наиболее важных инструментов электропитания является пара резисторов мощностью 10 Вт, сопротивлением от 10 до 22 Ом (или с номиналом, предложенным в статье о конкретном проекте). Они должны включаться последовательно в разрыв проводов, подводящих питание и ограничивать ток до приемлемых значений, особенно в сочетании с варистором или лампой.

Теперь, когда у Вас есть инструменты для диагностики, мы можем продолжить некоторые фактические измерения.

4  Наиболее распространенные неисправности

Как проверить усилитель прямоугольным сигналом - изображение

В этом разделе собрано все вместе. Первое, что нужно сделать, когда Вы знаете, что усилитель неисправен, — это определить точный характер неисправности. Коротится ли питание (защитные резисторы становятся горячими), или же сигнал на выходе принимает значение, равное одному из питающих напряжений и отказывается изменяться?

Во-первых, давайте рассмотрим «закороченное питание». Чаще всего оно вызывается короткозамкнутым (-и) (пробитым (-и)) выходным (-и) или драйверным (-и) транзистором (-ами), но также может быть результатом любой из следующих неисправностей:

  • неправильно установленные транзисторы — PNP вместо NPN (или наоборот) в выходном либо в драйверном каскаде;
  • короткие замыкания между корпусом транзистора и радиатором из-за пробитой изолирующей прокладки;
  • разомкнута цепь формирования тока покоя. Она состоит из транзистора и подстроечного резистора и формирует напряжение смещения, необходимое для поддержания тока через выходные транзисторы на уровне, позволяющем избежать искажений («ступеньки»). Неправильно установленный транзистор, неисправный (оборванный, с неправильным значением или неправильно настроенный) переменный резистор, «холодное» паяное соединение или оборванная дорожка могут привести к полному открытию выходных транзисторов при подаче питания. В некоторых конструкциях цепь смещения представляет собой просто два диода (или более), последовательно с которыми может быть также включен резистор;
  • перемычки из припоя между дорожками или компонентами.

Первое, что нужно определить — является ли это короткое замыкание (К.З.) «грубым» или же «мягким». Грубое К.З. будет проявляться, как очень низкое сопротивление между шинами питания (менее 1 Ом) при измерении с помощью мультиметра без подачи напряжения питания. Грубые К.З. всегда указывают либо на пробитые транзисторы, мостики из припоя, либо на проколотые изолирующие прокладки.

Мягкое К.З. определяется по тому факту, что сопротивление, измеренное между шинами питания одна по отношению к другой, выходом и землей (нулем, общей шиной) не показывают очень низкого значения (меньше, чем (скажем) 650 Ом или около того). Значение сопротивления около 600-700 Ом может быть только в одном направлении (в действительности, это напряжение, которое падает либо на P-N переходах реальных диодов, либо на переходах транзисторов).

Сопротивление может быть либо одинаковым в обоих направлениях либо же намного выше в другом направлении — при всех таких испытаниях нужно менять полярность подключения щупов мультиметра, чтобы измерить оба направления. Если находится мягкое К.З., то почти наверняка есть компонент (силовой или драйверный транзистор), установленный неправильно. Однако, такой же эффект создаст и неисправная цепь установки тока покоя.

Если Вы можете изменять напряжение питания, то определите напряжение, при котором развивается мягкое К.З.. Очень редко мягкие К.З. имеют место при чрезвычайно низком напряжении (менее ± 1 или 2 В), но если это так, то что-то точно неправильно установлено.

См. ниже раздел «Тестирование компонентов». Описанные в нем методы идентифицируют 99 % всех проблем с мягкими К.З.

Когда выходное напряжение «прилипает» к одному или другому напряжению питания, существует (как всегда) несколько причин этого. В порядке вероятности, они следующие:

  • неверно установленные компоненты;
  • перемычки из припоя между дорожками или компонентами;
  • «сухие» (или «холодные») паяные соединения;
  • нет контакта с общей шиной (землей) между усилителем и источником питания;
  • оборванные дорожки;
  • неисправный (-е) транзистор (-ы).

Если закорочен один из выходных или драйверных транзисторов, то это не вызывает прилипания выходного сигнала к напряжению питания. Это ведет к мягкому К.З. Прилипание выхода к напряжению питания может быть следствием обрыва транзистора, возможно, в сочетании с К.З. в противоположном плече. Эти неисправности можно найти с помощью мультиметра (как описано выше).

Важно устранить дефектные компоненты в первую очередь, иначе Вы потратите много времени, пытаясь найти проблему в неподходящем месте. Обычной ошибкой является оставленная неподключенной (или забытая) шина возвратного заземления к источнику питания — это дает аналогичный эффект прилипания выхода к напряжению питания, но обычно он развивается медленно (от нескольких сотен миллисекунд до нескольких минут).

Прилипший к напряжению питания выход может быть вызван любой из следующих неисправностей ближе ко входу:

  • обрыв резистора обратной связи (или дорожки обратной связи);
  • обрыв (или просто отсутствие проводимости) в цепи драйверного транзистора усилителя напряжения;
  • обрыв (или просто отсутствие проводимости) в цепи транзистора источника/приемника тока;
  • обрыв в цепи бутстрепного резистора;
  • перемычки из припоя между дорожками или компонентами;
  • неправильно установленные транзисторы, диоды, светодиоды и т.д. (как всегда и везде);
  • нефункционирующие дифференциальная входная цепь/усилитель ошибки.

Опять же, найти ошибку — задача сложная и здесь будет полезен следующий раздел. Самой распространенной проблемой на сегодняшний день все еще являются некорректные компоненты, но если проблема не находится визуальной проверкой — следует измерить напряжения.

4.3 Искажения

Искажения бывают самыми разными, но в первом приближении их можно разделить на категории «грубые» и «тонкие». Оба вида на самом деле грубые, но с точки зрения тестирования их важно как-то разграничивать. Я рассматривал бы грубые искажения, как состояние, при котором воспроизводится только половина сигнала.

Как проверить усилитель прямоугольным сигналом - изображение

Если воспроизводится только половина сигнала (или небольшая его часть одной полярности и полная часть другой), то Вы почти наверняка имеете обрыв где-то в драйверном или выходном каскаде. Это может быть оборванный транзистор (редко), но, скорее всего, будет:

  • плохое паяное соединение, оставляющее часть выходного каскада неработоспособным;
  • неверно установленные компоненты (как обычно);
  • неисправность в цепи усилителя напряжения, из-за чего недостаточен ток управления одним или другим выходным плечом.

Именно здесь осциллограф почти необходим — если не видно сигнала, то ошибки такого рода очень трудно диагностировать. Указанный выше список неисправностей относительно легко поможет разобраться с большинством проблем с искажениями.

Тонкие искажения более коварны, поскольку могут вызываться различными причинами. Опять же, очень трудно определить их без осциллографа, однако, измерения напряжения позволят изолировать некоторые из наиболее вероятных проблем. Все, что нужно найти:

  • неверно установленный ток покоя (смещения);
  • неисправная или закороченная цепь смещения;
  • перемычки из припоя между дорожками или компонентами;
  • паразитное самовозбуждение.

Первые три причины достаточно просты для выявления, требуя только наличия мультиметра. Несколько измерений достаточно быстро определят проблему.

Паразитное самовозбуждение выявить намного сложнее и для этого обычно требуется осциллограф. Я могу с уверенностью сказать, что проекты на веб-сайте ESP будут свободны от паразитного самовозбуждения при условии, что будут предприняты все обычные меры защиты против них — заземленный радиатор, экранированные входные кабели (удаленные от выходных проводов или шнура питания), а входные разъемы расположены на разумном расстоянии от выходных (или экранированы заземленной металлической крышкой).

Кроме того, убедитесь, что по мере необходимости установлены блокирующие конденсаторы, а провода питания постоянного тока имеют минимальную длину. Тестирование на искажения почти всегда требует нагрузки. Хотя небольшие искажения могут быть видимыми и без нагрузки, но большинство из них обнаруживается полностью или частично на минимальной нагрузке, равной 20 Ом или более, подключенной к выходу на динамик.

Как проверить усилитель прямоугольным сигналом - изображение

Усилитель работает некоторое время (от нескольких минут до нескольких недель), а затем работать перестает. Вы устранили почти все потенциальные ошибки конструкции, поскольку усилитель показал свою работоспособность. К сожалению, ситуацию это не спасает.

Одной из наиболее распространенных проблем в случае спонтанных отказов являются поддельные силовые транзисторы. См. статью «Поддельные транзисторы» для получения дополнительной информации по этой теме. Другие причины, которые следует искать:

  • «младенческая смертность» — термин, обычно используемый для описания компонентов, которые выходят из строя через короткое время с момента первого использования устройства. Наиболее часто отказывают полупроводники, в частности, транзисторы или интегральные микросхемы, но могут отказывать также и другие компоненты (электролитические конденсаторы — редко, но случается, диоды, стабилитроны и т.д.). Отказы вследствие «младенческой смертности» не так редки, как хотелось бы, но все же относительно редки. Это совершенно нормально (хотя и сильно раздражает);
  • «сухие» («холодные») паяные соединения — при первом тестировании, казалось, всё было в порядке, однако, после использования возникают отказы (отнюдь не редкость!);
  • чрезмерное напряжение питания, вызывающее повреждение компонентов;
  • неадекватный по площади радиатор, вызывающий перегрев компонентов;
  • неправильно установлен ток покоя (слишком высокий), что вызывает перегрев;
  • неправильно смонтированные силовые транзисторы с неадекватным тепловым контактом с радиатором;
  • короткозамкнутые выходы, как правило, являются результатом недостаточной (или отсутствующей) изоляции, либо переподключения громкоговорителей ко включенному усилителю с наличием выходного сигнала — такого делать крайне не рекомендуется, даже если усилитель имеет защиту от короткого замыкания.

5  Измерения напряжения

Измерения напряжения должны выполняться с максимальной осторожностью. Простая и дешевая неисправность после простого промаха щупом может легко превратиться в сложную и дорогостоящую!

В соответствии с общим характером этой статьи я не буду ссылаться на какие-либо конкретные напряжения (вернемся к этому немного позже), скорее дам обзор того, что именно нужно искать. На этом этапе ожидается хорошее понимание основ работы транзистора, в противном случае Вы не сможете понять, что же именно видите на Вашем мультиметре или осциллографе.

Всегда в первую очередь измеряйте напряжения питания!

Бесчисленные человеко-часы были потрачены впустую в попытках найти «причудливые» ошибки, когда все, что произошло — это то, что напряжение (-я) питания либо отсутствует (-ют), либо неверно (-ы). Это всегда должно быть самым первым измерением напряжения, которое нужно произвести!

5.1 Общие принципы

В наиболее общих терминах в любых биполярных транзисторах (полевые транзисторы с изолированным каналом — MOSFETs и полевые транзисторы с P-N переходом — FETs — это совершенно разные полупроводниковые приборы!) напряжение, измеренное между базой и эмиттером должно составлять около 600-700 мВ, а в линейных схемах (таких, как обычные усилители) напряжение той же полярности между эмиттером и коллектором будет несколько выше, чем между базой и эмиттером.

Осциллограф может практически не показывать напряжения переменного тока на базе, но большой сигнал переменного тока на коллекторе — обычно нормальная картина. Показания постоянного напряжения скажут Вам, правильно ли работает транзистор и, следовательно, способен ли он выполнять свою работу. Хотя напряжение между базой и эмиттером составляет 650 мВ, но полное напряжение питания на коллекторе не обязательно неверно — его правильность следует определить с учетом схемы.

Рис. 1 Входной каскад усилителя

5.2 Пример

Предположим на мгновение, что входной каскад выполнен по обычной дифференциальной схеме на паре NPN транзисторов (Q1 и Q2, рис. 1). Эмиттеры соединены вместе, возможно, с сопротивлениями небольшого значениями последовательно с каждым из них в некоторых конструкциях. Напряжение на базах будет, вероятно, на несколько милливольт отрицательнее, а напряжение между базами и эмиттерами должно составлять около 650 мВ.

В большинстве схем на коллекторах будет почти полное напряжение питания (хотя бывают и исключения). Если Вы увидите, что выходное напряжение «прилипло» к одному из напряжений питания, то это будет означать, что работа дифференциальной схемы нарушена и все напряжения неверны. Это может значить, что один из транзисторов данного каскада неисправен, хотя не исключено, что и нет!

Здесь Вам следует сыграть в детектива, чтобы выяснить, почему выход прилип к питанию (исключив все предыдущие типы неисправностей — неправильные компоненты, плохие паяные соединения и т.д.).

Следующим каскадом для тестирования является усилитель напряжения (Q5). Проверьте напряжение между базой и эмиттером и убедитесь, что оно составляет около 650 мВ. Если это так, то напряжение на коллекторе должно быть около нуля, но этого может и не быть. Вместо этого Вы можете обнаружить, что напряжение на коллекторе равно (или близкое к) одному из напряжений питания.

Следующий шаг — посмотреть на источники тока (Q3 и Q4). Между эмиттером и базой каждого из них должно быть 650 мВ или около того и ток через каждый легко определяется. Измерьте напряжение на каждом эмиттерном  резисторе — оно должно быть примерно … 650 мВ (вы можете понять, почему это так? Ответ немного ниже — раздел 5.3).

На коллекторе Q3 должно быть около минус 700 мВ, а Q4 — около 0 В. Если это так, то усилитель должен работать. Если предположить, что на коллекторе Q5, а также Q4 присутствует почти полное напряжение питания, тому есть одна из двух причин: либо Q5 пробит (или полностью открыт), либо нет коллекторного тока.

Как проверить усилитель прямоугольным сигналом - изображение

Работа Q5 заключается в том, чтобы выходной сигнал имел плюсовое значение, когда он открыт и минусовое, когда закрыт. Однако, если с коллектора Q4 ток не поступает, то выходной сигнал будет оставаться близким к напряжению плюсового питания. Входной каскад попытается выключить Q5, но будет несбалансирован напряжением на входе обратной связи.

Таким образом, на коллекторе Q5 присутствует полное положительное напряжение питания, с отклонением в ту или иную сторону на вольт или около того (на данном этапе неважно). Напряжение на коллекторе Q4 должно быть примерно таким же, а ток должен составлять около 6,5 мА. Но погодите! Если бы все работало так, как должно, усилитель был бы функционирующим, поэтому происходит что-то неладное — но мы это уже и так знали. Каково напряжение на коллекторе Q4? Является ли напряжение на резисторе эмиттера Q4 равным 0,65 В, как и должно было бы быть?

Если напряжение на коллекторе Q4 приближается к отрицательному напряжению питания или напряжение на его эмиттере намного ниже 0,65 В, то это значит, что коллекторная цепь Q4 оборвана — такое не является обычным отказом для биполярного транзистора, поэтому вполне вероятно, что имеется плохое паяное соединение в цепи коллектора Q4 (или, возможно, трещина на печатной плате).

Если напряжение коллектора близко к положительному источнику питания, то эмиттерный резистор мог бы быть оборван — возможно, из-за плохого паяного соединения, поскольку резисторы редко обрываются без большого количества дыма и обугливания. Внимательно проверьте его значение — не был ли по ошибке поставлен резистор на 100 кОм?

Рис. 2   Пример усилителя (P101)

На рисунке 2 показан пример, в данном случае на основе P101. Единственная разница между этим и любым другим усилителем — это выходные полевые МОП-транзисторы, но основные принципы работы идентичны. Вам нужен, в основном, мультиметр и закон Ома и совсем немного другого, чтобы проконтролировать и проверять напряжения и токи, которые должны существовать практически в любой конструкции усилителя, независимо от топологии.

Давайте посмотрим на схему выше. Напряжения показаны для каждой существенной точки схемы и из этих напряжений мы можем рассчитать ток через резисторы и многие транзисторы. В качестве примера R5 составляет 47 кОм, а R6 — 560 Ом. Падение напряжения на R6 составляет 0,65 В, потому:

  • ток через R6 = V / R = 0,65 / 560 = 1,16 мА
  • ток через Q1 = ток R6 / 2 (ток через каждый из транзисторов должен составлять 1/2 суммарного тока) = 0,58 мА
  • ток через R5 = V / R5 = 56 / 47 кОм = 1,2 мА

Если выходное напряжение не близко к нулю, то все другие напряжения, вероятно, будут неправильными!

Если выходное напряжение близко к нулю, то усилитель должен работать, если есть питающие напряжения.

По этой причине я вообще никогда не стремлюсь показывать напряжения в различных частях любой цепи, потому что напряжения будут корректными только в случае, если цепь работает правильно. Мне было бы глупо пытаться показывать значения напряжений для каждого сценария возможных сбоев и вся информация была бы абсолютно бесполезна.

В большинстве случаев можно проанализировать схему и вычислить вероятные напряжения, которые должны появляться в разных точках. Они не должны быть точными, но они должны иметь смысл. Не имеет смысла, если напряжение между базой и эмиттером транзистора составляет 15 В — это сразу указывает на то, что транзистор не того типа проводимости, неправильно установлен или неисправен.

Дважды проверьте техническое описание, затем замените его на новый правильного типа проводимости! Если Вы считаете, что транзистор установлен неправильно, то он, вероятно, уже повредился, как только было подано питание. Не используйте повторно поврежденные транзисторы — для них есть соответствующее место — мусорный ящик.

Анализ схемы для поиска неисправностей — непростая задача, но применяя логику и зная основные принципы, есть хороший шанс, что Вы эту проблему найдете. Отправлять мне сообщение: «Это не работает» бессмысленно — я не знаю, почему это не работает и один и тот же симптом может иметь множество возможных причин. В большинстве случаев показания напряжений также не помогают, потому что их часто понимают неправильно. Посмотрите, как напряжения показаны выше.

Напряжение на R6 составляет 0,65 В, а не 55,35 В. Последнее значение бессмысленно, потому что значение напряжения питания будет меняться по мере его считывания, а показания, вероятно, будут сильно ошибочными, из-за чего непригодны для использования. Аналогично считываются и многие другие значения. Излишне говорить, что следует проявлять большую осторожность, когда показания относятся к шинам (линиям) питания, потому что проскальзывание щупа может легко вызвать гораздо бо́льшие проблемы, чем они были в самом начале.

5.3 Резюме

Цель этого упражнения заключалась в том, чтобы продемонстрировать общие процессы метода исключения, которые должны использоваться для определения типа и характера дефекта, дабы его можно было затем легко исправить. В одной статье невозможно охватить все возможности, даже с помощью простых примерных схем, но, тщательно измерив напряжения, сможете отслеживать наиболее вероятную причину без необходимости «перепахивания» всей схемы!

Оцените статью
Avtomobil-Vaz.ru